The Nikodym property of Boolean algebras and cardinal invariants of the continuum

Damian Sobota

Kurt Gödel Research Center, Vienna

Winter School, Hejnice 2017

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

If K is a compact Hausdorff space, then C(K) denotes the Banach space of real-valued continuous functions on K.

If K is a compact Hausdorff space, then C(K) denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^*$ is the space of all bounded regular Borel measures on K.

If K is a compact Hausdorff space, then C(K) denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^*$ is the space of all bounded regular Borel measures on K.

Question

Let $\langle \mu_n : n \in \omega \rangle$ be a sequence of measures on a Boolean algebra \mathcal{A} . Assume that $\lim_{n \to \infty} \mu_n(\mathcal{A}) = 0$ for every $\mathcal{A} \in \mathcal{A}$.

If K is a compact Hausdorff space, then C(K) denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^*$ is the space of all bounded regular Borel measures on K.

Question

Let $\langle \mu_n : n \in \omega \rangle$ be a sequence of measures on a Boolean algebra \mathcal{A} . Assume that $\lim_{n \to \infty} \mu_n(\mathcal{A}) = 0$ for every $\mathcal{A} \in \mathcal{A}$. Does it follow that

$$\lim_{n\to\infty}\int_{\mathcal{K}_{\mathcal{A}}}f\,d\mu_n=0\quad\text{for every }f\in C(\mathcal{K}_{\mathcal{A}})?$$

A sequence of measures $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is

• pointwise convergent if $\mu_n(A) \rightarrow 0$ for every $A \in \mathcal{A}$,

A sequence of measures $\langle \mu_{\textit{n}} \colon \textit{n} \in \omega
angle$ on \mathcal{A} is

- pointwise convergent if $\mu_n(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{\mathcal{K}_A} f \, d\mu_n \to 0$ for every $f \in C(\mathcal{K}_A)$,

A sequence of measures $\langle \mu_{\textit{n}} \colon \textit{n} \in \omega
angle$ on \mathcal{A} is

- pointwise convergent if $\mu_n(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_A} f d\mu_n \to 0$ for every $f \in C(K_A)$,
- pointwise bounded if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,

A sequence of measures $\langle \mu_{\textit{n}} \colon \textit{n} \in \omega
angle$ on \mathcal{A} is

- pointwise convergent if $\mu_n(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_A} f d\mu_n \to 0$ for every $f \in C(K_A)$,
- pointwise bounded if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

A sequence of measures $\langle \mu_{\textit{n}} \colon \textit{n} \in \omega
angle$ on \mathcal{A} is

- pointwise convergent if $\mu_n(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_A} f d\mu_n \to 0$ for every $f \in C(K_A)$,
- pointwise bounded if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every pointwise convergent sequence of measures on A is weak* convergent,
- every **pointwise bounded** sequence of measures on A is **uniformly bounded**.

A sequence of measures $\langle \mu_{\textit{n}} \colon \textit{n} \in \omega
angle$ on \mathcal{A} is

- pointwise convergent if $\mu_n(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{\mathcal{K}_A} f \, d\mu_n \to 0$ for every $f \in C(\mathcal{K}_A)$,
- pointwise bounded if $\sup_n |\mu_n(A)| < \infty$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup_n \|\mu_n\| < \infty$.

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every pointwise convergent sequence of measures on A is weak* convergent,
- every **pointwise bounded** sequence of measures on A is **uniformly bounded**.

The question

Let $\langle \mu_n: n \in \omega \rangle$ be a pointwise bounded sequence of measures on a Boolean algebra \mathcal{A} . Is $\langle \mu_n: n \in \omega \rangle$ uniformly bounded?

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

Definition

A sequence $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is *anti-Nikodym* if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A striking improvement of the UBP!

Dunford & Schwartz

Definition

A sequence $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} is *anti-Nikodym* if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Definition

An infinite Boolean algebra \mathcal{A} has the Nikodym property (N) if there are no anti-Nikodym sequences on \mathcal{A} .

Notable examples

• σ -algebras (Nikodym '30),

Notable examples

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,

Notable examples

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of [0, 1] (Schachermayer '82; generalized by Wheeler & Graves '83 and Valdivia '13).

Notable examples

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of [0, 1] (Schachermayer '82; generalized by Wheeler & Graves '83 and Valdivia '13).

However, if the Stone space K_A of A has a convergent sequence, then A does not have (N):

if
$$x_n o x$$
, then put $\mu_n = n(\delta_{x_n} - \delta_x)$

Notable examples

- σ -algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of [0, 1] (Schachermayer '82; generalized by Wheeler & Graves '83 and Valdivia '13).

However, if the Stone space K_A of A has a convergent sequence, then A does not have (N):

if
$$x_n \to x$$
, then put $\mu_n = n(\delta_{x_n} - \delta_x)$

All the notable examples are of cardinality at least c!

Question

Is there an infinite Boolean algebra with (N) and cardinality less than $\mathfrak{c}?$

Question

Is there an infinite Boolean algebra with (N) and cardinality less than $\mathfrak{c}?$

The Nikodym number

 $\mathfrak{n} = \min\{|\mathcal{A}|: \text{ infinite } \mathcal{A} \text{ has } (\mathsf{N})\}.$

Question

Is there an infinite Boolean algebra with (N) and cardinality less than $\mathfrak{c}?$

The Nikodym number

 $\mathfrak{n} = \min\{|\mathcal{A}|: \text{ infinite } \mathcal{A} \text{ has } (N)\}.$

If $|\mathcal{A}| = \omega$, then $\mathcal{K}_{\mathcal{A}} \subseteq 2^{\omega}$, so \mathcal{A} does not have (N). Thus:

 $\omega_1 \leq \mathfrak{n} \leq \mathfrak{c}.$

Theorem (Booth '74)

 $\mathfrak{s} = \min \{ w(K) : K \text{ compact not sequentially compact} \}.$

Theorem (Booth '74)

 $\mathfrak{s} = \min \{ w(K) : K \text{ compact not sequentially compact} \}.$

Theorem (Geschke '06)

Let K be infinite compact and such that $w(K) < cov(\mathcal{M})$. Then, K is either scattered or K contains a perfect subset L with a \mathbb{G}_{δ} -point $x \in L$. In both cases, K contains a convergent sequence.

Theorem (Booth '74)

 $\mathfrak{s} = \min \{ w(K) : K \text{ compact not sequentially compact} \}.$

Theorem (Geschke '06)

Let K be infinite compact and such that $w(K) < cov(\mathcal{M})$. Then, K is either scattered or K contains a perfect subset L with a \mathbb{G}_{δ} -point $x \in L$. In both cases, K contains a convergent sequence.

Corollary

 $\max(\mathfrak{s}, \operatorname{cov}(\mathcal{M})) \leqslant \mathfrak{n}.$

Lower bounds for ${\mathfrak n}$

Proposition

 $\mathfrak{b}\leqslant\mathfrak{n}.$

Proposition

 $\mathfrak{b}\leqslant\mathfrak{n}.$

Corollary

- $\max(\mathfrak{b},\mathfrak{s},\operatorname{cov}(\mathcal{M})) \leq \mathfrak{n}.$
- Under MA(ctbl), n = c.

Proposition

 $\mathfrak{b}\leqslant\mathfrak{n}.$

Corollary

• $\max(\mathfrak{b},\mathfrak{s},\operatorname{cov}(\mathcal{M})) \leq \mathfrak{n}.$

• Under MA(ctbl),
$$\mathfrak{n} = \mathfrak{c}$$
.

There is no ZFC inequality between any of \mathfrak{b} , \mathfrak{s} and $cov(\mathcal{M})$.

Question

 $\mathfrak{d} \leqslant \mathfrak{n}?$

Let \mathcal{A} be with (N)

```
Let \mathcal{A} be with (N)
\Downarrow
\mathcal{K}_{\mathcal{A}} has no convergent sequences
```

Let \mathcal{A} be with (N) \Downarrow $\mathcal{K}_{\mathcal{A}}$ has no convergent sequences \Downarrow $\mathcal{K}_{\mathcal{A}}$ is not scattered

```
Let \mathcal{A} be with (N)

\downarrow \downarrow

\mathcal{K}_{\mathcal{A}} has no convergent sequences

\downarrow \downarrow

\mathcal{K}_{\mathcal{A}} is not scattered

\downarrow \downarrow

\mathcal{A} is not superatomic
```

Upper bounds for n?

```
Let \mathcal{A} be with (N)
                        \parallel
K_{\mathcal{A}} has no convergent sequences
                        \|
          K_A is not scattered
                        \|
        \mathcal{A} is not superatomic
                Fr(\omega) \subseteq \mathcal{A}
```

Upper bounds for n?

Upper bounds for n?

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ -complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} .

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ -complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} .

Using anti-Nikodymness of ⟨μ_n: n ∈ ω⟩ construct a special antichain ⟨a_k: k ∈ ω⟩ in A...

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ -complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} .

- Using anti-Nikodymness of ⟨μ_n: n ∈ ω⟩ construct a special antichain ⟨a_k: k ∈ ω⟩ in A...
- Using specialness of (a_k: k ∈ ω) obtain a subantichain (a_i: i ∈ A) (A ∈ [ω]^ω) such that:

$$\sup_{k\in A} \left| \mu_k \Big(\bigvee_{i\in A} a_i\Big) \right| = \infty.$$

If A is a σ -algebra, then every pointwise bounded sequence of measures on A is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ -complete Boolean algebra. Assume \mathcal{A} does not have (N) — there exists anti-Nikodym $\langle \mu_n : n \in \omega \rangle$ on \mathcal{A} .

- Using anti-Nikodymness of ⟨μ_n: n ∈ ω⟩ construct a special antichain ⟨a_k: k ∈ ω⟩ in A...
- Using specialness of (a_k: k ∈ ω) obtain a subantichain (a_i: i ∈ A) (A ∈ [ω]^ω) such that:

$$\sup_{k\in A} \left| \mu_k \Big(\bigvee_{i\in A} a_i\Big) \right| = \infty.$$

A contradiction!

Let κ be a cardinal number. We say that a Boolean algebra \mathcal{A} has *the* κ -*anti-Nikodym property* if there exists a family $\{\langle a_n^{\gamma} \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every anti-Nikodym sequence of real-valued measures $\langle \mu_n: n \in \omega \rangle$ on \mathcal{A} there exist $\gamma < \kappa$ and an increasing sequence $\langle n_k: k \in \omega \rangle$ of natural numbers such that for every $k \in \omega$ the following inequality is satisfied:

$$\left|\mu_{n_k}\left(a_k^{\gamma}\right)\right| > \sum_{i=0}^{k-1} \left|\mu_{n_k}\left(a_i^{\gamma}\right)\right| + k + 1.$$

Let κ be a cardinal number. We say that a Boolean algebra \mathcal{A} has *the* κ -*anti-Nikodym property* if there exists a family $\{\langle a_n^{\gamma} \in \mathcal{A} : n \in \omega \rangle : \gamma < \kappa\}$ of κ many antichains in \mathcal{A} with the following property:

for every anti-Nikodym sequence of real-valued measures $\langle \mu_n: n \in \omega \rangle$ on \mathcal{A} there exist $\gamma < \kappa$ and an increasing sequence $\langle n_k: k \in \omega \rangle$ of natural numbers such that for every $k \in \omega$ the following inequality is satisfied:

$$\left|\mu_{n_k}\left(a_k^{\gamma}\right)\right| > \sum_{i=0}^{k-1} \left|\mu_{n_k}\left(a_i^{\gamma}\right)\right| + k + 1.$$

The anti-Nikodym number n_a

 $\mathfrak{n}_a = \min \{ \kappa : \text{ every ctbl } \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

Given $\mathcal{F} \subseteq [\omega]^{\omega}$, an antichain $\langle a_n : n \in \omega \rangle$ in \mathcal{A} is \mathcal{F} -complete in \mathcal{A} if $\bigvee_{n \in \mathcal{A}} a_n \in \mathcal{A}$ for every $\mathcal{A} \in \mathcal{F}$.

Given $\mathcal{F} \subseteq [\omega]^{\omega}$, an antichain $\langle a_n : n \in \omega \rangle$ in \mathcal{A} is \mathcal{F} -complete in \mathcal{A} if $\bigvee_{n \in \mathcal{A}} a_n \in \mathcal{A}$ for every $A \in \mathcal{F}$.

 \mathcal{A} is σ -complete iff every antichain in \mathcal{A} is $[\omega]^{\omega}$ -complete.

Two auxiliary numbers

Definition

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ is *Nikodym extracting* if for every algebra \mathcal{A} the following condition holds:

for every sequence $\langle \mu_n: n \in \omega \rangle$ of positive measures on \mathcal{A} and every \mathcal{F} -complete antichain $\langle a_n \in \mathcal{A}: n \in \omega \rangle$ in \mathcal{A} , there is $\mathcal{A} \in \mathcal{F}$ such that the following inequality is satisfied:

$$\mu_n\Big(\bigvee_{\substack{k\in A\\k>n}}a_k\Big)<1$$

for every $n \in A$.

Two auxiliary numbers

Definition

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ is *Nikodym extracting* if for every algebra \mathcal{A} the following condition holds:

for every sequence $\langle \mu_n: n \in \omega \rangle$ of positive measures on \mathcal{A} and every \mathcal{F} -complete antichain $\langle a_n \in \mathcal{A}: n \in \omega \rangle$ in \mathcal{A} , there is $\mathcal{A} \in \mathcal{F}$ such that the following inequality is satisfied:

$$\mu_n\Big(\bigvee_{\substack{k\in A\\k>n}}a_k\Big)<1$$

for every $n \in A$.

Darst '67: $[\omega]^{\omega}$ is Nikodym extracting.

The Nikodym extracting number n_e

 $\mathfrak{n}_e = \min \left\{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{ is Nikodym extracting} \right\}.$

Let $\kappa \ge \max(\mathfrak{n}_a, \mathfrak{n}_e)$ be such that $\kappa = \operatorname{cof}([\kappa]^{\omega})$ (then $\operatorname{cf}(\kappa) > \omega!$).

Let $\kappa \ge \max(\mathfrak{n}_a, \mathfrak{n}_e)$ be such that $\kappa = \operatorname{cof}([\kappa]^{\omega})$ (then $\operatorname{cf}(\kappa) > \omega!$). Fix a Nikodym extracting family $\mathcal{G} \subseteq [\omega]^{\omega}$, $|\mathcal{G}| = \mathfrak{n}_e$.

• Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;
 - $\begin{array}{l} \textbf{@} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;
 - $\begin{array}{l} \textcircled{\textbf{o}} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$

3 put
$$b^\gamma_A = igvee_{n\in A} a^\gamma_n$$
 for every $A\in \mathcal{G}$ and $\gamma < \mathfrak{n}_a$;

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;
 - $\begin{array}{l} \textcircled{\textbf{o}} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$
 - $\textbf{0} \text{ put } b_A^{\gamma} = \bigvee_{n \in A} a_n^{\gamma} \text{ for every } A \in \mathcal{G} \text{ and } \gamma < \mathfrak{n}_a;$

• put
$$\Phi(\mathcal{A}) = \left\{ b_{\mathcal{A}}^{\gamma}: \ \mathcal{A} \in \mathcal{G}, \gamma < \mathfrak{n}_{a} \right\};$$

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;
 - $\begin{array}{l} \textbf{@} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$

3 put
$$b_A^{\gamma} = \bigvee_{n \in A} a_n^{\gamma}$$
 for every $A \in \mathcal{G}$ and $\gamma < \mathfrak{n}_a$;

• put
$$\Phi(\mathcal{A}) = \{ b_{\mathcal{A}}^{\gamma} : A \in \mathcal{G}, \gamma < \mathfrak{n}_{a} \};$$

5 $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;
 - $\begin{array}{l} \textcircled{\textbf{o}} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$
 - $\textbf{ o put } b_A^{\gamma} = \bigvee_{n \in A} a_n^{\gamma} \text{ for every } A \in \mathcal{G} \text{ and } \gamma < \mathfrak{n}_a;$
 - put $\Phi(\mathcal{A}) = \{ b_{\mathcal{A}}^{\gamma} : A \in \mathcal{G}, \gamma < \mathfrak{n}_{a} \};$
 - **(b)** $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.
- On a limit step take the union of preceding algebras.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - **1** take cofinal $\mathcal{F} \subseteq [\mathcal{B}_{\eta}]^{\omega}$, $|\mathcal{F}| = \kappa$;
 - $\begin{array}{l} \textcircled{\textbf{o}} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$

3 put
$$b_A^\gamma = \bigvee_{n \in A} a_n^\gamma$$
 for every $A \in \mathcal{G}$ and $\gamma < \mathfrak{n}_a$;

• put
$$\Phi(\mathcal{A}) = \left\{ b_{\mathcal{A}}^{\gamma}: \ \mathcal{A} \in \mathcal{G}, \gamma < \mathfrak{n}_{a}
ight\};$$

- **5** $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.
- On a limit step take the union of preceding algebras.
- Continue until $\mathcal{A} = \mathcal{B}_{\omega_1}$ is obtained.

- Start with some $\mathcal{B}_0 \subseteq \wp(\kappa)$, $|\mathcal{B}_0| = \kappa$.
- On a successor step:
 - $\textbf{ 1 take cofinal } \mathcal{F} \subseteq \left[\mathcal{B}_{\eta}\right]^{\omega}, \, \left|\mathcal{F}\right| = \kappa;$
 - $\begin{array}{l} \textbf{@} \quad \text{for every } \mathcal{A} \in \mathcal{F} \text{ take } \left\{ \left\langle a_n^{\gamma} \colon n \in \omega \right\rangle \colon \gamma < \mathfrak{n}_{\mathfrak{a}} \right\} \text{ witnessing } \\ \mathfrak{n}_{\mathfrak{a}}\text{-anti-Nikodymness;} \end{array}$
 - $\textbf{0} \text{ put } b_{\mathcal{A}}^{\gamma} = \bigvee_{n \in \mathcal{A}} a_n^{\gamma} \text{ for every } \mathcal{A} \in \mathcal{G} \text{ and } \gamma < \mathfrak{n}_a;$
 - put $\Phi(\mathcal{A}) = \{ b_{\mathcal{A}}^{\gamma} : A \in \mathcal{G}, \gamma < \mathfrak{n}_{a} \};$
 - **5** $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.
- On a limit step take the union of preceding algebras.
- Continue until $\mathcal{A} = \mathcal{B}_{\omega_1}$ is obtained.

 ${\cal A}$ has the Nikodym property and cardinality $\kappa.$

Theorem

Assume that $\max(\mathfrak{n}_a, \mathfrak{n}_e) \leq \kappa$ for a cardinal number κ such that $\operatorname{cof}([\kappa]^{\omega}) = \kappa$. Then, there exists a Boolean algebra \mathcal{A} with the Nikodym property and of cardinality κ .

The anti-Nikodym number n_a

 $\mathfrak{n}_{a} = \min \{ \kappa : \text{ every ctbl } \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

 $\mathfrak{n}_{a} = \min \{ \kappa : \underline{\text{every}} \text{ ctbl } \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

The anti-Nikodym number \mathfrak{n}_a for \mathcal{A}

 $\mathfrak{n}_{a}(\mathcal{A}) = \min \{ \kappa : \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

 $\mathfrak{n}_{a} = \min \{ \kappa : \text{ every ctbl } \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

The anti-Nikodym number \mathfrak{n}_a for \mathcal{A}

 $\mathfrak{n}_{a}(\mathcal{A}) = \min \{ \kappa : \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

Proposition

Let \mathcal{A} , \mathcal{B} be Boolean algebras and $h : \mathcal{A} \to \mathcal{B}$ an epimorphism. Then, $\mathfrak{n}_a(\mathcal{A}) \ge \mathfrak{n}_a(\mathcal{B})$.

 $\mathfrak{n}_a = \min \{ \kappa : \underline{\text{every}} \text{ ctbl } \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

The anti-Nikodym number \mathfrak{n}_a for \mathcal{A}

 $\mathfrak{n}_{a}(\mathcal{A}) = \min \{ \kappa : \mathcal{A} \text{ has } \kappa \text{-anti-Nikodym property} \}.$

Proposition

Let \mathcal{A} , \mathcal{B} be Boolean algebras and $h : \mathcal{A} \to \mathcal{B}$ an epimorphism. Then, $\mathfrak{n}_a(\mathcal{A}) \ge \mathfrak{n}_a(\mathcal{B})$.

Corollary

For any countable \mathcal{A} we have:

$$\mathfrak{n}_{a}(FC) \leqslant \mathfrak{n}_{a}(\mathcal{A}) \leqslant \mathfrak{n}_{a}(Fr(\omega)) = \mathfrak{n}_{a}.$$

Proposition

Proposition

$$\ \, \mathfrak{n}_{a}(Fr(\omega)) = \mathfrak{n}_{a} \leqslant \mathrm{cof}(\mathcal{N}).$$

Proposition

The Nikodym extracting number n_e

 $\mathfrak{n}_e = \min \{ |\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \text{ is Nikodym extracting} \}.$

The Nikodym extracting number n_e

 $\mathfrak{n}_e = \min \left\{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{ is Nikodym extracting} \right\}.$

Definition

An ultrafilter \mathcal{U} on ω is *selective* (*Ramsey*) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leq 1$ for every $P \in \mathcal{P}$.

The Nikodym extracting number n_e

 $\mathfrak{n}_e = \min \{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq [\omega]^{\omega} \text{ is Nikodym extracting} \}.$

Definition

An ultrafilter \mathcal{U} on ω is *selective* (*Ramsey*) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leq 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.

The Nikodym extracting number n_e

 $\mathfrak{n}_{e} = \min \{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq [\omega]^{\omega} \text{ is Nikodym extracting} \}.$

Definition

An ultrafilter \mathcal{U} on ω is *selective* (*Ramsey*) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leq 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.

The selective ultrafilter number \mathfrak{u}_s

 $\mathfrak{u}_s = \min \{ |\mathcal{F}|: \mathcal{F} \text{ is a basis of a selective ultrafilter} \}.$

The Nikodym extracting number

Proposition

 $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{n}_e \leqslant \min(\mathfrak{d},\mathfrak{u}_s).$

The Nikodym extracting number

Proposition

 $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{n}_e \leqslant \min(\mathfrak{d},\mathfrak{u}_s).$

Theorem

- $cov(\mathcal{M}) \leq \mathfrak{n}_e \leq \min(\mathfrak{d},\mathfrak{u}_s).$
- 3 If $\operatorname{cof}([\kappa]^{\omega}) = \kappa \ge \max(\mathfrak{n}_a, \mathfrak{n}_e)$, then $\mathfrak{n} \le \kappa$.

Theorem

• $\mathfrak{b} \leq \mathfrak{n}_a \leq \operatorname{cof}(\mathcal{N}).$

$$ov(\mathcal{M}) \leq \mathfrak{n}_e \leq \min(\mathfrak{d},\mathfrak{u}_s).$$

3 If
$$\operatorname{cof}([\kappa]^{\omega}) = \kappa \geqslant \max(\mathfrak{n}_a, \mathfrak{n}_e)$$
, then $\mathfrak{n} \leqslant \kappa$.

Theorem

Consistently, n < c.

Definition

$$\operatorname{cof}(\mathcal{A}) = \min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

Definition

 $cof(\mathcal{A}) = min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$ $h(\mathcal{A}) = min\{|\phi(\mathcal{A})|: \phi \text{ is a homomorphism}\}.$

Definition

$$cof(\mathcal{A}) = min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

$$h(\mathcal{A}) = min\{|\phi(\mathcal{A})|: \phi \text{ is a homomorphism}\}.$$

Theorem (Koppelberg '77)

•
$$\omega \leq \operatorname{cof}(\mathcal{A}) \leq h(\mathcal{A}) \leq \mathfrak{c},$$

Definition

$$cof(\mathcal{A}) = min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

$$h(\mathcal{A}) = min\{|\phi(\mathcal{A})|: \phi \text{ is a homomorphism}\}.$$

Theorem (Koppelberg '77)

$$\ \ \, 0 \ \ \, \omega \leqslant {\rm cof}({\cal A}) \leqslant {\it h}({\cal A}) \leqslant {\frak c},$$

2 (MA) If
$$|\mathcal{A}| < \mathfrak{c}$$
, then $\operatorname{cof}(\mathcal{A}) = h(\mathcal{A}) = \omega$.

Definition

$$cof(\mathcal{A}) = min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

$$h(\mathcal{A}) = min\{|\phi(\mathcal{A})|: \phi \text{ is a homomorphism}\}.$$

Theorem (Koppelberg '77)

$$\ \ \, 0 \ \ \, \omega \leqslant {\rm cof}({\cal A}) \leqslant {\it h}({\cal A}) \leqslant {\frak c},$$

2 (MA) If
$$|\mathcal{A}| < \mathfrak{c}$$
, then $\operatorname{cof}(\mathcal{A}) = h(\mathcal{A}) = \omega$.

Theorem (Just-Koszmider '91)

In the Sacks model there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}| = cof(\mathcal{B}) = h(\mathcal{B}) = \omega_1$.

Definition

$$cof(\mathcal{A}) = min\{\kappa : \exists \langle \mathcal{A}_{\xi} : \xi < \kappa \rangle \nearrow \mathcal{A}\}.$$

$$h(\mathcal{A}) = min\{|\phi(\mathcal{A})|: \phi \text{ is a homomorphism}\}.$$

Theorem (Koppelberg '77)

$$\bullet \ \omega \leqslant \mathsf{cof}(\mathcal{A}) \leqslant \mathsf{h}(\mathcal{A}) \leqslant \mathfrak{c},$$

2 (MA) If
$$|\mathcal{A}| < \mathfrak{c}$$
, then $\operatorname{cof}(\mathcal{A}) = h(\mathcal{A}) = \omega$.

Theorem (Just-Koszmider '91)

In the Sacks model there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}| = cof(\mathcal{B}) = h(\mathcal{B}) = \omega_1$.

Theorem (Pawlikowski–Ciesielski '02)

Assuming $cof(\mathcal{N}) = \omega_1$, there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}| = cof(\mathcal{B}) = \omega_1$.

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $cof(\mathcal{A}) > \omega$.

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $cof(\mathcal{A}) > \omega$.

Corollary

Assuming $\operatorname{cof}(\mathcal{N}) \leq \kappa = \operatorname{cof}([\kappa]^{\omega})$, there exists a Boolean algebra \mathcal{A} such that $|\mathcal{A}| = \kappa$, $h(\mathcal{A}) \geq \mathfrak{n}$ and $\operatorname{cof}(\mathcal{A}) = \omega_1$.

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $cof(\mathcal{A}) > \omega$.

Corollary

Assuming $\operatorname{cof}(\mathcal{N}) \leq \kappa = \operatorname{cof}([\kappa]^{\omega})$, there exists a Boolean algebra \mathcal{A} such that $|\mathcal{A}| = \kappa$, $h(\mathcal{A}) \geq \mathfrak{n}$ and $\operatorname{cof}(\mathcal{A}) = \omega_1$.

An old open question

Is there a consistent example of a Boolean algebra $\mathcal B$ for which $\omega_1 < cof(\mathcal B) < \mathfrak c$?

Consequence – the Efimov problem

Definition

An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta\omega$.

Consequence – the Efimov problem

Definition

An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Consequence - the Efimov problem

Definition

An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Fedorčuk: CH, \Diamond , $\mathfrak{s} = \omega_1 \& \mathfrak{c} = 2^{\omega_1}$ Dow: $\operatorname{cof}([\mathfrak{s}]^{\omega}) = \mathfrak{s} \& 2^{\mathfrak{s}} < 2^{\mathfrak{c}}$ and many more...

Consequence - the Efimov problem

Definition

An infinite compact Hausdorff space is a *Efimov space* if it contains neither a convergent sequence nor a copy of $\beta\omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Fedorčuk: CH, \Diamond , $\mathfrak{s} = \omega_1 \& \mathfrak{c} = 2^{\omega_1}$ Dow: $\operatorname{cof}([\mathfrak{s}]^{\omega}) = \mathfrak{s} \& 2^{\mathfrak{s}} < 2^{\mathfrak{c}}$ and many more...

Theorem

Assuming $cof(\mathcal{N}) \leq \kappa = cof([\kappa]^{\omega}) < \mathfrak{c}$, there exists a Efimov space K such that $w(K) = \kappa$ and for every infinite closed subset L of K we have $w(L) \geq \mathfrak{n}$.

Thank you for the attention!