The Nikodym property of Boolean algebras and cardinal invariants of the continuum

Damian Sobota
Kurt Gödel Research Center, Vienna
Winter School, Hejnice 2017

Let's start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation.

Let's start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

Let's start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K.

Let's start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^{*}$ is the space of all bounded regular Borel measures on K.

Let's start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^{*}$ is the space of all bounded regular Borel measures on K.

Question

Let $\left\langle\mu_{n}: n \in \omega\right\rangle$ be a sequence of measures on a Boolean algebra \mathcal{A}. Assume that $\lim _{n \rightarrow \infty} \mu_{n}(A)=0$ for every $A \in \mathcal{A}$.

Let's start with measures

A measure μ on a Boolean algebra \mathcal{A} is a signed real-valued finitely additive function of finite variation. If μ is a measure on \mathcal{A}, then μ extends uniquely to a regular Borel (σ-additive) measure μ on the Stone space $K_{\mathcal{A}}$ of \mathcal{A} (with the same variation).

If K is a compact Hausdorff space, then $C(K)$ denotes the Banach space of real-valued continuous functions on K. The dual space $C(K)^{*}$ is the space of all bounded regular Borel measures on K.

Question

Let $\left\langle\mu_{n}: n \in \omega\right\rangle$ be a sequence of measures on a Boolean algebra \mathcal{A}. Assume that $\lim _{n \rightarrow \infty} \mu_{n}(A)=0$ for every $A \in \mathcal{A}$. Does it follow that

$$
\lim _{n \rightarrow \infty} \int_{K_{\mathcal{A}}} f d \mu_{n}=0 \quad \text { for every } f \in C\left(K_{\mathcal{A}}\right) ?
$$

Pointwise boundedness vs. uniform boundedness

A sequence of measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is

- pointwise convergent if $\mu_{n}(A) \rightarrow 0$ for every $A \in \mathcal{A}$,

Pointwise boundedness vs. uniform boundedness

A sequence of measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is

- pointwise convergent if $\mu_{n}(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_{\mathcal{A}}} f d \mu_{n} \rightarrow 0$ for every $f \in C\left(K_{\mathcal{A}}\right)$,

Pointwise boundedness vs. uniform boundedness

A sequence of measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is

- pointwise convergent if $\mu_{n}(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_{\mathcal{A}}} f d \mu_{n} \rightarrow 0$ for every $f \in C\left(K_{\mathcal{A}}\right)$,
- pointwise bounded if $\sup _{n}\left|\mu_{n}(A)\right|<\infty$ for every $A \in \mathcal{A}$,

Pointwise boundedness vs. uniform boundedness

A sequence of measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is

- pointwise convergent if $\mu_{n}(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_{\mathcal{A}}} f d \mu_{n} \rightarrow 0$ for every $f \in C\left(K_{\mathcal{A}}\right)$,
- pointwise bounded if $\sup _{n}\left|\mu_{n}(A)\right|<\infty$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup _{n}\left\|\mu_{n}\right\|<\infty$.

Pointwise boundedness vs. uniform boundedness

A sequence of measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is

- pointwise convergent if $\mu_{n}(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_{\mathcal{A}}} f d \mu_{n} \rightarrow 0$ for every $f \in C\left(K_{\mathcal{A}}\right)$,
- pointwise bounded if $\sup _{n}\left|\mu_{n}(A)\right|<\infty$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup _{n}\left\|\mu_{n}\right\|<\infty$.

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every pointwise convergent sequence of measures on \mathcal{A} is weak* convergent,
- every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

Pointwise boundedness vs. uniform boundedness

A sequence of measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is

- pointwise convergent if $\mu_{n}(A) \rightarrow 0$ for every $A \in \mathcal{A}$,
- weak* convergent if $\int_{K_{\mathcal{A}}} f d \mu_{n} \rightarrow 0$ for every $f \in C\left(K_{\mathcal{A}}\right)$,
- pointwise bounded if $\sup _{n}\left|\mu_{n}(A)\right|<\infty$ for every $A \in \mathcal{A}$,
- uniformly bounded if $\sup _{n}\left\|\mu_{n}\right\|<\infty$.

Fact

Let \mathcal{A} be a Boolean algebra. TFAE:

- every pointwise convergent sequence of measures on \mathcal{A} is weak* convergent,
- every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

The question

Let $\left\langle\mu_{n}: n \in \omega\right\rangle$ be a pointwise bounded sequence of measures on a Boolean algebra \mathcal{A}. Is $\left\langle\mu_{n}: n \in \omega\right\rangle$ uniformly bounded?

Nikodym's UBP

Theorem (Nikodym's Uniform Boundedness Principle '30)
If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

Nikodym's UBP

Theorem (Nikodym's Uniform Boundedness Principle '30)
If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A striking improvement of the UBP!
Dunford \& Schwartz

Nikodym's UBP

Theorem (Nikodym's Uniform Boundedness Principle '30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A striking improvement of the UBP!
Dunford \& Schwartz

Definition

A sequence $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is anti-Nikodym if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Nikodym's UBP

Theorem (Nikodym's Uniform Boundedness Principle '30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A striking improvement of the UBP!
Dunford \& Schwartz

Definition

A sequence $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} is anti-Nikodym if it is pointwise bounded on \mathcal{A} but not uniformly bounded.

Definition

An infinite Boolean algebra \mathcal{A} has the Nikodym property (N) if there are no anti-Nikodym sequences on \mathcal{A}.

The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),

The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,

The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of $[0,1]$ (Schachermayer '82; generalized by Wheeler \& Graves '83 and Valdivia '13).

The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of $[0,1]$
(Schachermayer '82; generalized by Wheeler \& Graves '83 and Valdivia '13).

However, if the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N):

$$
\text { if } x_{n} \rightarrow x \text {, then put } \mu_{n}=n\left(\delta_{x_{n}}-\delta_{x}\right)
$$

The Nikodym Property

Notable examples

- σ-algebras (Nikodym '30),
- algebras with Subsequential Completeness Property (Haydon '81),
- or IP, (E), (f), SIP, WSCP...,
- the algebra of Jordan measurable subsets of $[0,1]$
(Schachermayer '82; generalized by Wheeler \& Graves '83 and Valdivia '13).

However, if the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N):

$$
\text { if } x_{n} \rightarrow x \text {, then put } \mu_{n}=n\left(\delta_{x_{n}}-\delta_{x}\right)
$$

All the notable examples are of cardinality at least \mathfrak{c} !

The Nikodym Number

Question

Is there an infinite Boolean algebra with (N) and cardinality less than c ?

The Nikodym Number

Question

Is there an infinite Boolean algebra with (N) and cardinality less than \mathfrak{c} ?

The Nikodym number
$\mathfrak{n}=\min \{|\mathcal{A}|: \quad$ infinite \mathcal{A} has $(\mathrm{N})\}$.

The Nikodym Number

Question

Is there an infinite Boolean algebra with (N) and cardinality less than \mathfrak{c} ?

The Nikodym number
$\mathfrak{n}=\min \{|\mathcal{A}|:$ infinite \mathcal{A} has $(\mathrm{N})\}$.

If $|\mathcal{A}|=\omega$, then $K_{\mathcal{A}} \subseteq 2^{\omega}$, so \mathcal{A} does not have (N). Thus:

$$
\omega_{1} \leqslant \mathfrak{n} \leqslant \mathfrak{c}
$$

Lower bounds for \mathfrak{n}

If the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N).

Lower bounds for \mathfrak{n}

If the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N).

Theorem (Booth '74)
$\mathfrak{s}=\min \{w(K): K$ compact not sequentially compact $\}$.

Lower bounds for \mathfrak{n}

If the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N).

Theorem (Booth '74)

$\mathfrak{s}=\min \{w(K): K$ compact not sequentially compact $\}$.

Theorem (Geschke '06)

Let K be infinite compact and such that $w(K)<\operatorname{cov}(\mathcal{M})$. Then, K is either scattered or K contains a perfect subset L with a \mathbb{G}_{δ}-point $x \in L$. In both cases, K contains a convergent sequence.

Lower bounds for \mathfrak{n}

If the Stone space $K_{\mathcal{A}}$ of \mathcal{A} has a convergent sequence, then \mathcal{A} does not have (N).

```
Theorem (Booth '74)
\(\mathfrak{s}=\min \{w(K): K\) compact not sequentially compact \(\}\).
```


Theorem (Geschke '06)

Let K be infinite compact and such that $w(K)<\operatorname{cov}(\mathcal{M})$. Then, K is either scattered or K contains a perfect subset L with a \mathbb{G}_{δ}-point $x \in L$. In both cases, K contains a convergent sequence.

Corollary

$\max (\mathfrak{s}, \operatorname{cov}(\mathcal{M})) \leqslant \mathfrak{n}$.

Lower bounds for \mathfrak{n}

Proposition $\mathfrak{b} \leqslant \mathfrak{n}$.

Lower bounds for \mathfrak{n}

Proposition

$\mathfrak{b} \leqslant \mathfrak{n}$.
Corollary

- $\max (\mathfrak{b}, \mathfrak{s}, \operatorname{cov}(\mathcal{M})) \leqslant \mathfrak{n}$.
- Under MA(ctbl), $\mathfrak{n}=\mathfrak{c}$.

Lower bounds for \mathfrak{n}

Proposition

$\mathfrak{b} \leqslant \mathfrak{n}$.
Corollary

- $\max (\mathfrak{b}, \mathfrak{s}, \operatorname{cov}(\mathcal{M})) \leqslant \mathfrak{n}$.
- Under MA(ctbl), $\mathfrak{n}=\mathfrak{c}$.

There is no ZFC inequality between any of $\mathfrak{b}, \mathfrak{s}$ and $\operatorname{cov}(\mathcal{M})$.

Question

$$
\mathfrak{d} \leqslant \mathfrak{n} ?
$$

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

\Downarrow
$K_{\mathcal{A}}$ has no convergent sequences

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

$$
\Downarrow
$$

$K_{\mathcal{A}}$ has no convergent sequences

$$
\Downarrow
$$

$K_{\mathcal{A}}$ is not scattered

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

$$
\Downarrow
$$

$K_{\mathcal{A}}$ has no convergent sequences

$$
\Downarrow
$$

$K_{\mathcal{A}}$ is not scattered
\mathcal{A} is not superatomic

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

$$
\Downarrow
$$

$K_{\mathcal{A}}$ has no convergent sequences

$$
\Downarrow
$$

$K_{\mathcal{A}}$ is not scattered

$$
\Downarrow
$$

\mathcal{A} is not superatomic

$$
\begin{gathered}
\stackrel{\Downarrow}{\operatorname{Fr}(\omega) \subseteq \mathcal{A}} \text { }
\end{gathered}
$$

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

$$
\Downarrow
$$

$K_{\mathcal{A}}$ has no convergent sequences

$$
\Downarrow
$$

$K_{\mathcal{A}}$ is not scattered

$$
\Downarrow
$$

\mathcal{A} is not superatomic

$$
\begin{gathered}
\Downarrow \\
\operatorname{Fr}(\omega) \subseteq \mathcal{A} \\
\Downarrow
\end{gathered}
$$

\exists homomorphism $\Phi: \mathcal{A} \rightarrow \overline{\operatorname{Fr}(\omega)}$

Upper bounds for \mathfrak{n} ?

Let \mathcal{A} be with (N)

$$
\Downarrow
$$

$K_{\mathcal{A}}$ has no convergent sequences

$$
\Downarrow
$$

$K_{\mathcal{A}}$ is not scattered

$$
\Downarrow
$$

\mathcal{A} is not superatomic
\Downarrow

$$
\operatorname{Fr}(\omega) \subseteq \mathcal{A}
$$

$$
\Downarrow
$$

\exists homomorphism $\Phi: \mathcal{A} \rightarrow \overline{\operatorname{Fr}(\omega)}$

$\exists \operatorname{Fr}(\omega) \subseteq \mathcal{B} \subseteq \overline{\operatorname{Fr}(\omega)}$ with (N) and $|\mathcal{B}|=\mathfrak{n}$.

Let's prove Nikodym's UBP!

Theorem (Nikodym's Uniform Boundedness Principle '30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) there exists anti-Nikodym $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A}.

Let's prove Nikodym's UBP!

Theorem (Nikodym's Uniform Boundedness Principle '30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) there exists anti-Nikodym $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A}.
(1) Using anti-Nikodymness of $\left\langle\mu_{n}: n \in \omega\right\rangle$ construct a special antichain $\left\langle a_{k}: k \in \omega\right\rangle$ in $\mathcal{A} \ldots$

Let's prove Nikodym's UBP!

Theorem (Nikodym's Uniform Boundedness Principle '30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) there exists anti-Nikodym $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A}.
(1) Using anti-Nikodymness of $\left\langle\mu_{n}: n \in \omega\right\rangle$ construct a special antichain $\left\langle a_{k}: k \in \omega\right\rangle$ in $\mathcal{A} \ldots$
(2) Using specialness of $\left\langle a_{k}: k \in \omega\right\rangle$ obtain a subantichain $\left\langle a_{i}: \quad i \in A\right\rangle$ $\left(A \in[\omega]^{\omega}\right)$ such that:

$$
\sup _{k \in A}\left|\mu_{k}\left(\bigvee_{i \in A} a_{i}\right)\right|=\infty
$$

Let's prove Nikodym's UBP!

Theorem (Nikodym's Uniform Boundedness Principle '30)

If \mathcal{A} is a σ-algebra, then every pointwise bounded sequence of measures on \mathcal{A} is uniformly bounded.

A sketch of the proof

Let \mathcal{A} be a σ-complete Boolean algebra. Assume \mathcal{A} does not have (N) there exists anti-Nikodym $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A}.
(1) Using anti-Nikodymness of $\left\langle\mu_{n}: n \in \omega\right\rangle$ construct a special antichain $\left\langle a_{k}: k \in \omega\right\rangle$ in $\mathcal{A} \ldots$
(2) Using specialness of $\left\langle a_{k}: k \in \omega\right\rangle$ obtain a subantichain $\left\langle a_{i}: \quad i \in A\right\rangle$ $\left(A \in[\omega]^{\omega}\right)$ such that:

$$
\sup _{k \in A}\left|\mu_{k}\left(\bigvee_{i \in A} a_{i}\right)\right|=\infty
$$

A contradiction!

Two auxiliary numbers

Definition

Let κ be a cardinal number. We say that a Boolean algebra \mathcal{A} has the κ-anti-Nikodym property if there exists a family $\left\{\left\langle a_{n}^{\gamma} \in \mathcal{A}: n \in \omega\right\rangle: \gamma<\kappa\right\}$ of κ many antichains in \mathcal{A} with the following property:
for every anti-Nikodym sequence of real-valued measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} there exist $\gamma<\kappa$ and an increasing sequence $\left\langle n_{k}: k \in \omega\right\rangle$ of natural numbers such that for every $k \in \omega$ the following inequality is satisfied:

$$
\left|\mu_{n_{k}}\left(a_{k}^{\gamma}\right)\right|>\sum_{i=0}^{k-1}\left|\mu_{n_{k}}\left(a_{i}^{\gamma}\right)\right|+k+1
$$

Two auxiliary numbers

Definition

Let κ be a cardinal number. We say that a Boolean algebra \mathcal{A} has the κ-anti-Nikodym property if there exists a family $\left\{\left\langle a_{n}^{\gamma} \in \mathcal{A}: n \in \omega\right\rangle: \gamma<\kappa\right\}$ of κ many antichains in \mathcal{A} with the following property:
for every anti-Nikodym sequence of real-valued measures $\left\langle\mu_{n}: n \in \omega\right\rangle$ on \mathcal{A} there exist $\gamma<\kappa$ and an increasing sequence $\left\langle n_{k}: k \in \omega\right\rangle$ of natural numbers such that for every $k \in \omega$ the following inequality is satisfied:

$$
\left|\mu_{n_{k}}\left(a_{k}^{\gamma}\right)\right|>\sum_{i=0}^{k-1}\left|\mu_{n_{k}}\left(a_{i}^{\gamma}\right)\right|+k+1
$$

The anti-Nikodym number \mathfrak{n}_{a}

$\mathfrak{n}_{a}=\min \{\kappa:$ every ctbl \mathcal{A} has κ-anti-Nikodym property $\}$.

Two auxiliary numbers

Definition

Given $\mathcal{F} \subseteq[\omega]^{\omega}$, an antichain $\left\langle a_{n}: n \in \omega\right\rangle$ in \mathcal{A} is \mathcal{F}-complete in \mathcal{A} if $\bigvee_{n \in A} a_{n} \in \mathcal{A}$ for every $A \in \mathcal{F}$.

Two auxiliary numbers

Definition

Given $\mathcal{F} \subseteq[\omega]^{\omega}$, an antichain $\left\langle a_{n}: n \in \omega\right\rangle$ in \mathcal{A} is \mathcal{F}-complete in \mathcal{A} if $\bigvee_{n \in A} a_{n} \in \mathcal{A}$ for every $A \in \mathcal{F}$.
\mathcal{A} is σ-complete iff every antichain in \mathcal{A} is $[\omega]^{\omega}$-complete.

Two auxiliary numbers

Definition

A family $\mathcal{F} \subseteq[\omega]^{\omega}$ is Nikodym extracting if for every algebra \mathcal{A} the following condition holds:
for every sequence $\left\langle\mu_{n}: n \in \omega\right\rangle$ of positive measures on \mathcal{A} and every \mathcal{F}-complete antichain $\left\langle a_{n} \in \mathcal{A}: n \in \omega\right\rangle$ in \mathcal{A}, there is $A \in \mathcal{F}$ such that the following inequality is satisfied:

$$
\mu_{n}\left(\bigvee_{\substack{k \in A \\ k>n}} a_{k}\right)<1
$$

for every $n \in A$.

Two auxiliary numbers

Definition

A family $\mathcal{F} \subseteq[\omega]^{\omega}$ is Nikodym extracting if for every algebra \mathcal{A} the following condition holds:
for every sequence $\left\langle\mu_{n}: n \in \omega\right\rangle$ of positive measures on \mathcal{A} and every \mathcal{F}-complete antichain $\left\langle a_{n} \in \mathcal{A}: n \in \omega\right\rangle$ in \mathcal{A}, there is $A \in \mathcal{F}$ such that the following inequality is satisfied:

$$
\mu_{n}\left(\bigvee_{\substack{k \in A \\ k>n}} a_{k}\right)<1
$$

for every $n \in A$.
Darst '67: $[\omega]^{\omega}$ is Nikodym extracting.

The Nikodym extracting number \mathfrak{n}_{e}

$\mathfrak{n}_{e}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq[\omega]^{\omega}\right.$ is Nikodym extracting $\}$.

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\left.\operatorname{cf}(\kappa)>\omega!\right)$.
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\left.\operatorname{cf}(\kappa)>\omega!\right)$.
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \mathcal{F}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\left.\operatorname{cf}(\kappa)>\omega!\right)$.
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \mathcal{F}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;
(3) put $b_{A}^{\gamma}=\bigvee_{n \in A} a_{n}^{\gamma}$ for every $A \in \mathcal{G}$ and $\gamma<\mathfrak{n}_{a}$;

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \overline{\mathcal{F}}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;
(3) put $b_{A}^{\gamma}=\bigvee_{n \in A} a_{n}^{\gamma}$ for every $A \in \mathcal{G}$ and $\gamma<\mathfrak{n}_{a}$;
(9) put $\Phi(\mathcal{A})=\left\{b_{A}^{\gamma}: A \in \mathcal{G}, \gamma<\mathfrak{n}_{a}\right\}$;

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \overline{\mathcal{F}}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;
(3) put $b_{A}^{\gamma}=\bigvee_{n \in A} a_{n}^{\gamma}$ for every $A \in \mathcal{G}$ and $\gamma<\mathfrak{n}_{a}$;
(9) put $\Phi(\mathcal{A})=\left\{b_{A}^{\gamma}: A \in \mathcal{G}, \gamma<\mathfrak{n}_{a}\right\}$;
(c) $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \overline{\mathcal{F}}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;
(3) put $b_{A}^{\gamma}=\bigvee_{n \in A} a_{n}^{\gamma}$ for every $A \in \mathcal{G}$ and $\gamma<\mathfrak{n}_{a}$;
(9) put $\Phi(\mathcal{A})=\left\{b_{A}^{\gamma}: A \in \mathcal{G}, \gamma<\mathfrak{n}_{a}\right\}$;
(6) $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.
- On a limit step take the union of preceding algebras.

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \mathcal{F}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;
(3) put $b_{A}^{\gamma}=\bigvee_{n \in A} a_{n}^{\gamma}$ for every $A \in \mathcal{G}$ and $\gamma<\mathfrak{n}_{a}$;
(9) put $\Phi(\mathcal{A})=\left\{b_{A}^{\gamma}: A \in \mathcal{G}, \gamma<\mathfrak{n}_{a}\right\}$;
(6) $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.
- On a limit step take the union of preceding algebras.
- Continue until $\mathcal{A}=\mathcal{B}_{\omega_{1}}$ is obtained.

The construction

Let $\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$ be such that $\kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$ (then $\operatorname{cf}(\kappa)>\omega!$).
Fix a Nikodym extracting family $\mathcal{G} \subseteq[\omega]^{\omega},|\mathcal{G}|=\mathfrak{n}_{e}$.

- Start with some $\mathcal{B}_{0} \subseteq \wp(\kappa),\left|\mathcal{B}_{0}\right|=\kappa$.
- On a successor step:
(1) take cofinal $\mathcal{F} \subseteq\left[\mathcal{B}_{\eta}\right]^{\omega},|\mathcal{F}|=\kappa$;
(2) for every $\mathcal{A} \in \mathcal{F}$ take $\left\{\left\langle a_{n}^{\gamma}: n \in \omega\right\rangle: \gamma<\mathfrak{n}_{a}\right\}$ witnessing $\mathfrak{n}_{\mathrm{a}}$-anti-Nikodymness;
(3) put $b_{A}^{\gamma}=\bigvee_{n \in A} a_{n}^{\gamma}$ for every $A \in \mathcal{G}$ and $\gamma<\mathfrak{n}_{a}$;
(9) put $\Phi(\mathcal{A})=\left\{b_{A}^{\gamma}: A \in \mathcal{G}, \gamma<\mathfrak{n}_{a}\right\}$;
(6) $\mathcal{B}_{\eta+1}$ is generated by $\mathcal{B}_{\eta} \cup \bigcup_{\mathcal{A} \in \mathcal{F}} \Phi(\mathcal{A})$.
- On a limit step take the union of preceding algebras.
- Continue until $\mathcal{A}=\mathcal{B}_{\omega_{1}}$ is obtained.
\mathcal{A} has the Nikodym property and cardinality κ.

The theorem

Theorem

Assume that $\max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right) \leqslant \kappa$ for a cardinal number κ such that $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa$. Then, there exists a Boolean algebra \mathcal{A} with the Nikodym property and of cardinality κ.

The anti-Nikodym number

The anti-Nikodym number \mathfrak{n}_{a}
$\mathfrak{n}_{a}=\min \{\kappa: \underline{\text { every }} \operatorname{ctbl} \mathcal{A}$ has κ-anti-Nikodym property $\}$.

The anti-Nikodym number

The anti-Nikodym number \mathfrak{n}_{a} $\mathfrak{n}_{a}=\min \{\kappa:$ every $\operatorname{ctbl} \mathcal{A}$ has κ-anti-Nikodym property $\}$.

The anti-Nikodym number \mathfrak{n}_{a} for \mathcal{A}
$\mathfrak{n}_{a}(\mathcal{A})=\min \{\kappa: \mathcal{A}$ has κ-anti-Nikodym property $\}$.

The anti-Nikodym number

The anti-Nikodym number \mathfrak{n}_{a}

$\mathfrak{n}_{a}=\min \{\kappa: \underline{\text { every }} \mathrm{ctbl} \mathcal{A}$ has κ-anti-Nikodym property $\}$.
The anti-Nikodym number \mathfrak{n}_{a} for \mathcal{A}
$\mathfrak{n}_{a}(\mathcal{A})=\min \{\kappa: \mathcal{A}$ has κ-anti-Nikodym property $\}$.

Proposition

Let \mathcal{A}, \mathcal{B} be Boolean algebras and $h: \mathcal{A} \rightarrow \mathcal{B}$ an epimorphism. Then, $\mathfrak{n}_{a}(\mathcal{A}) \geqslant \mathfrak{n}_{a}(\mathcal{B})$.

The anti-Nikodym number

The anti-Nikodym number \mathfrak{n}_{a}

$\mathfrak{n}_{a}=\min \{\kappa:$ every $c t b l \mathcal{A}$ has κ-anti-Nikodym property $\}$.

The anti-Nikodym number \mathfrak{n}_{a} for \mathcal{A}

$\mathfrak{n}_{a}(\mathcal{A})=\min \{\kappa: \mathcal{A}$ has κ-anti-Nikodym property $\}$.

Proposition

Let \mathcal{A}, \mathcal{B} be Boolean algebras and $h: \mathcal{A} \rightarrow \mathcal{B}$ an epimorphism. Then, $\mathfrak{n}_{a}(\mathcal{A}) \geqslant \mathfrak{n}_{a}(\mathcal{B})$.

Corollary

For any countable \mathcal{A} we have:

$$
\mathfrak{n}_{a}(F C) \leqslant \mathfrak{n}_{a}(\mathcal{A}) \leqslant \mathfrak{n}_{a}(F r(\omega))=\mathfrak{n}_{a} .
$$

The anti-Nikodym number

Proposition

(1) $\mathfrak{b} \leqslant \mathfrak{n}_{a}(F C) \leqslant \operatorname{cof}(\mathcal{M})$.

The anti-Nikodym number

Proposition

(1) $\mathfrak{b} \leqslant \mathfrak{n}_{a}(F C) \leqslant \operatorname{cof}(\mathcal{M})$.
(2) $\mathfrak{n}_{a}(\operatorname{Fr}(\omega))=\mathfrak{n}_{a} \leqslant \operatorname{cof}(\mathcal{N})$.

The anti-Nikodym number

Proposition

(1) $\mathfrak{b} \leqslant \mathfrak{n}_{a}(F C) \leqslant \operatorname{cof}(\mathcal{M})$.
(2) $\mathfrak{n}_{a}(\operatorname{Fr}(\omega))=\mathfrak{n}_{a} \leqslant \operatorname{cof}(\mathcal{N})$.

The Nikodym extracting number

The Nikodym extracting number \mathfrak{n}_{e}

$$
\mathfrak{n}_{e}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq[\omega]^{\omega} \text { is Nikodym extracting }\right\} .
$$

The Nikodym extracting number

The Nikodym extracting number \mathfrak{n}_{e}

$\mathfrak{n}_{e}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq[\omega]^{\omega}\right.$ is Nikodym extracting $\}$.

Definition

An ultrafilter \mathcal{U} on ω is selective (Ramsey) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leqslant 1$ for every $P \in \mathcal{P}$.

The Nikodym extracting number

The Nikodym extracting number \mathfrak{n}_{e}

$\mathfrak{n}_{e}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq[\omega]^{\omega}\right.$ is Nikodym extracting $\}$.

Definition

An ultrafilter \mathcal{U} on ω is selective (Ramsey) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leqslant 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.

The Nikodym extracting number

The Nikodym extracting number \mathfrak{n}_{e}

$\mathfrak{n}_{e}=\min \left\{|\mathcal{F}|: \mathcal{F} \subseteq[\omega]^{\omega}\right.$ is Nikodym extracting $\}$.

Definition

An ultrafilter \mathcal{U} on ω is selective (Ramsey) if for every partition \mathcal{P} of ω disjoint with \mathcal{U} there is $A \in \mathcal{U}$ such that $|A \cap P| \leqslant 1$ for every $P \in \mathcal{P}$.

Theorem (Kunen '76)

The existence of selective ultrafilters is undecidable in ZFC.
The selective ultrafilter number \mathfrak{u}_{s}
$\mathfrak{u}_{s}=\min \{|\mathcal{F}|: \mathcal{F}$ is a basis of a selective ultrafilter $\}$.

The Nikodym extracting number

Proposition

$$
\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{n}_{e} \leqslant \min \left(\mathfrak{d}, \mathfrak{u}_{s}\right)
$$

The Nikodym extracting number

Proposition

$$
\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{n}_{e} \leqslant \min \left(\mathfrak{d}, \mathfrak{u}_{s}\right)
$$

Summary

Theorem

(1) $\mathfrak{b} \leqslant \mathfrak{n}_{a} \leqslant \operatorname{cof}(\mathcal{N})$.
(2) $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{n}_{e} \leqslant \min \left(\mathfrak{d}, \mathfrak{u}_{s}\right)$.
(3) If $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$, then $\mathfrak{n} \leqslant \kappa$.

Summary

Theorem

(1) $\mathfrak{b} \leqslant \mathfrak{n}_{a} \leqslant \operatorname{cof}(\mathcal{N})$.
(2) $\operatorname{cov}(\mathcal{M}) \leqslant \mathfrak{n}_{e} \leqslant \min \left(\mathfrak{d}, \mathfrak{u}_{s}\right)$.
(3) If $\operatorname{cof}\left([\kappa]^{\omega}\right)=\kappa \geqslant \max \left(\mathfrak{n}_{a}, \mathfrak{n}_{e}\right)$, then $\mathfrak{n} \leqslant \kappa$.

Theorem

Consistently, $\mathfrak{n}<\mathfrak{c}$.

Consequence - cofinality and homomorphism type

Definition

$\operatorname{cof}(\mathcal{A})=\min \left\{\kappa: \exists\left\langle\mathcal{A}_{\xi}: \xi<\kappa\right\rangle \nearrow \mathcal{A}\right\}$.

Consequence - cofinality and homomorphism type

Definition

$\operatorname{cof}(\mathcal{A})=\min \left\{\kappa: \exists\left\langle\mathcal{A}_{\xi}: \xi<\kappa\right\rangle \nearrow \mathcal{A}\right\}$. $h(\mathcal{A})=\min \{|\phi(\mathcal{A})|: \phi$ is a homomorphism $\}$.

Consequence - cofinality and homomorphism type

Definition

$\operatorname{cof}(\mathcal{A})=\min \left\{\kappa: \exists\left\langle\mathcal{A}_{\xi}: \xi<\kappa\right\rangle \nearrow \mathcal{A}\right\}$. $h(\mathcal{A})=\min \{|\phi(\mathcal{A})|: \phi$ is a homomorphism $\}$.

Theorem (Koppelberg '77)

(1) $\omega \leqslant \operatorname{cof}(\mathcal{A}) \leqslant h(\mathcal{A}) \leqslant \mathfrak{c}$,

Consequence - cofinality and homomorphism type

Definition

$\operatorname{cof}(\mathcal{A})=\min \left\{\kappa: \exists\left\langle\mathcal{A}_{\xi}: \xi<\kappa\right\rangle \nearrow \mathcal{A}\right\}$. $h(\mathcal{A})=\min \{|\phi(\mathcal{A})|: \phi$ is a homomorphism $\}$.

Theorem (Koppelberg '77)

(1) $\omega \leqslant \operatorname{cof}(\mathcal{A}) \leqslant h(\mathcal{A}) \leqslant \mathfrak{c}$,
(2) (MA) If $|\mathcal{A}|<\mathfrak{c}$, then $\operatorname{cof}(\mathcal{A})=h(\mathcal{A})=\omega$.

Consequence - cofinality and homomorphism type

Definition

$\operatorname{cof}(\mathcal{A})=\min \left\{\kappa: \exists\left\langle\mathcal{A}_{\xi}: \xi<\kappa\right\rangle \nearrow \mathcal{A}\right\}$. $h(\mathcal{A})=\min \{|\phi(\mathcal{A})|: \phi$ is a homomorphism $\}$.

Theorem (Koppelberg '77)

(1) $\omega \leqslant \operatorname{cof}(\mathcal{A}) \leqslant h(\mathcal{A}) \leqslant \mathfrak{c}$,
(2) (MA) If $|\mathcal{A}|<\mathfrak{c}$, then $\operatorname{cof}(\mathcal{A})=h(\mathcal{A})=\omega$.

Theorem (Just-Koszmider '91)

In the Sacks model there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}|=\operatorname{cof}(\mathcal{B})=h(\mathcal{B})=\omega_{1}$.

Consequence - cofinality and homomorphism type

Definition

$\operatorname{cof}(\mathcal{A})=\min \left\{\kappa: \exists\left\langle\mathcal{A}_{\xi}: \xi<\kappa\right\rangle \nearrow \mathcal{A}\right\}$. $h(\mathcal{A})=\min \{|\phi(\mathcal{A})|: \phi$ is a homomorphism $\}$.

Theorem (Koppelberg '77)

(1) $\omega \leqslant \operatorname{cof}(\mathcal{A}) \leqslant h(\mathcal{A}) \leqslant \mathfrak{c}$,
(2) (MA) If $|\mathcal{A}|<\mathfrak{c}$, then $\operatorname{cof}(\mathcal{A})=h(\mathcal{A})=\omega$.

Theorem (Just-Koszmider '91)

In the Sacks model there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}|=\operatorname{cof}(\mathcal{B})=h(\mathcal{B})=\omega_{1}$.

Theorem (Pawlikowski-Ciesielski '02)

Assuming $\operatorname{cof}(\mathcal{N})=\omega_{1}$, there exists a Boolean algebra \mathcal{B} such that $|\mathcal{B}|=\operatorname{cof}(\mathcal{B})=\omega_{1}$.

Consequence - cofinality of Boolean algebras

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $\operatorname{cof}(\mathcal{A})>\omega$.

Consequence - cofinality of Boolean algebras

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $\operatorname{cof}(\mathcal{A})>\omega$.

Corollary

Assuming $\operatorname{cof}(\mathcal{N}) \leqslant \kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$, there exists a Boolean algebra \mathcal{A} such that $|\mathcal{A}|=\kappa, h(\mathcal{A}) \geqslant \mathfrak{n}$ and $\operatorname{cof}(\mathcal{A})=\omega_{1}$.

Consequence - cofinality of Boolean algebras

Theorem (Schachermayer '82)

If \mathcal{A} has the Nikodym property, then $\operatorname{cof}(\mathcal{A})>\omega$.

Corollary

Assuming $\operatorname{cof}(\mathcal{N}) \leqslant \kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)$, there exists a Boolean algebra \mathcal{A} such that $|\mathcal{A}|=\kappa, h(\mathcal{A}) \geqslant \mathfrak{n}$ and $\operatorname{cof}(\mathcal{A})=\omega_{1}$.

An old open question

Is there a consistent example of a Boolean algebra \mathcal{B} for which $\omega_{1}<\operatorname{cof}(\mathcal{B})<\mathfrak{c}$?

Consequence - the Efimov problem

Definition

An infinite compact Hausdorff space is a Efimov space if it contains neither a convergent sequence nor a copy of $\beta \omega$.

Consequence - the Efimov problem

Definition

An infinite compact Hausdorff space is a Efimov space if it contains neither a convergent sequence nor a copy of $\beta \omega$.

The Efimov Problem '69
Does there exist a Efimov space?

Consequence - the Efimov problem

Definition

An infinite compact Hausdorff space is a Efimov space if it contains neither a convergent sequence nor a copy of $\beta \omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Fedorčuk: $\mathrm{CH}, \diamond, \mathfrak{s}=\omega_{1} \& \mathfrak{c}=2^{\omega_{1}}$
Dow: $\operatorname{cof}\left([\mathfrak{s}]^{\omega}\right)=\mathfrak{s} \& 2^{\mathfrak{s}}<2^{\mathfrak{c}}$
and many more...

Consequence - the Efimov problem

Definition

An infinite compact Hausdorff space is a Efimov space if it contains neither a convergent sequence nor a copy of $\beta \omega$.

The Efimov Problem '69

Does there exist a Efimov space?

Fedorčuk: $\mathrm{CH}, \diamond, \mathfrak{s}=\omega_{1} \& \mathfrak{c}=2^{\omega_{1}}$
Dow: $\operatorname{cof}\left([\mathfrak{F}]^{\omega}\right)=\mathfrak{s} \& 2^{\mathfrak{s}}<2^{\mathfrak{c}}$ and many more...

Theorem

Assuming $\operatorname{cof}(\mathcal{N}) \leqslant \kappa=\operatorname{cof}\left([\kappa]^{\omega}\right)<\mathfrak{c}$, there exists a Efimov space K such that $w(K)=\kappa$ and for every infinite closed subset L of K we have $w(L) \geqslant \mathfrak{n}$.

The end

Thank you for the attention!

